您当前所在的位置: 必一·运动 > 健身知识 > 健身常识

健身知识

Fitness knowledge

分类>>

B-SportsOpenAI总裁Greg:需要AGI治疗妻子综合性罕见病谷歌医疗AI已有重大突破

2024-02-14 11:39:48
浏览次数:
返回列表

  B-SportsOpenAI总裁Greg:需要AGI治疗妻子综合性罕见病谷歌医疗AI已有重大突破很多人可能没有仔细思考过这个问题,只看到了结果。部分人认为,科技进步就应该无条件推进。至于原因为何,可能并没有加以深思。

  也许追问到最后,也只是得出一个让我们的生活更加便利的结论。而究竟在哪些方面提供了何种便捷,可能也没法说那么完善。

  在最近的一篇推文中,Greg写道:「在经历了长达五年的身体多系统疼痛之后,我的妻子最近被诊断出患有一种名为过度活动型埃勒斯-当洛斯综合征(hEDS)的遗传性疾病。」

  而Greg的妻子是之前当了快六年的演员,目前的职业还是名健身教练。可想而知这个病会给她带来多么大的痛苦。

  从这个病的介绍来看,这是一个综合性的疾病。涉及到全身很多系统,比如骨科、心脏科、神经科、肠胃科、皮肤科等等。

  「五年来,我们看了比Anna之前一生还要多的医生和各种专科医生。大部分医生只聚焦于自己所熟悉的领域,而并没有能把这些碎片化的信息整合在一起。」

  后来,Anna的一位专精过敏的大夫细致听取了她的所有症状和存在的问题,把有关她身体状况的细节都拼凑在了一起。

  Greg表示,随着人类医学的进步,我们似乎有一种趋势,那就是以牺牲广度为代价来增加医生的深度。但对于病人来说,我们需要的是足够的广度和足够的深度,二者缺一不可。

  最理想的情况就是,未来我们可以把这种全面的医疗服务变得口袋化,就好像一个集结了众多科室的医生组成的专家小组,共同为我们的身体健康保驾护航。

  Greg最后在推特中表示,虽然在技术方面还有很长的路要走,AGI要学习如何在像医疗这样的高风险领域将其与人类专家的监督结合起来,如何一起部署,但前景已经越来越明朗。

  通过技术开发人员、医疗保健提供商、政府和社会的通力合作,未来人们有希望为所有家庭成员提供更好的医疗保健服务。

  Bacarella表示,如果医疗AI哪怕能像平均水平的医生那样聪明,同时又像GPT4那样有耐心、专注,还懂得多,那估计行,未来将会有很大的改变。

  Paul也认为,AI发展到一定阶段,就一定可以把医学上的新诊疗手段推而广之必一运动,让普罗大众都能接触到各种医疗技术。

  美国哈佛大学、斯坦福大学、耶鲁医学院、加拿大多伦多大学等多所顶尖高校、医疗机构的研究人员在Nature上联合提出了一种全新的医学人工智能范式,即「全科医学人工智能」,可以灵活地编码、整合和大规模解释医学领域的多模态数据,比如文本、成像、基因组学等。

  而谷歌Research和谷歌DeepMind也曾共同发布论文,对全科医学人工智能概念进行了实现、验证。

  研究人员首先策划了一个全新的多模态生物医学基准数据集MultiMedBench,包含100多万条样本,涉及14个任务,如医疗问题回答、乳腺和皮肤科图像解读、放射学报告生成和总结以及基因组变异识别。 然后提出了一个新模型Med-PaLM Multimodal(Med-PaLM M),验证了通用生物医学人工智能系统的可实现性。

  这是一个大型多模态生成模型,仅用一组模型权重就可以灵活地编码和解释生物医学数据,包括临床语言、成像和基因组学数据。在所有MultiMedBench任务中,Med-PaLM M的性能都与最先进的技术相差无几,在部分任务上甚至还超越了专用的SOTA模型。

  文中还报告了该模型在零样本学习下可以泛化到新的医学概念和任务、跨任务迁移学习以及涌现出的零样本医学推理能力。

  文中还进一步探究了Med-PaLM M的能力和局限性,研究人员对比了模型生成的及人类编写的X光报告进行了放射科医师评估,在246份病例中,临床医生认为Med-PaLM M的报告在40.5%的样本中比放射科医生编写的要更好,也表明Med-PaLM M具有潜在的临床实用性。

  为了训练和评估大模型在执行各种临床相关任务的能力,谷歌的研究人员收集了一个多任务、多模态的全科医疗基准数据集MultiMedBench。

  该基准由12个开源数据集以及14个独立任务组成,包含100多万条样本,涵盖了医疗问答、放射学报告、病理学、皮肤病学、X光、乳房X光和基因组学等多个领域。

  它是Med-PaLM的继任者,它要比其前身更加强大,在USMLE样式的问题上达到了 86.5% 的准确率,提高了19%。

  Med-PaLM 2是在海量医学文本和代码数据集(包括医学期刊、临床试验和教科书)上进行训练的。这使它能以高准确度理解和生成医学语言。

  ·提高诊断的准确性:Med-PaLM 2可以帮助医生综合考虑患者的所有医疗信息,包括症状、病史和检查结果,为患者确定正确的诊断。

  ·提高效率:Med-PaLM 2可以帮助医生自动完成总结病历和从研究论文中查找相关信息等任务。这可以让医生腾出更多时间与病人沟通。

  ·改善沟通:Med-PaLM 2可以帮助医生以通俗易懂的方式向病人传达复杂的医疗信息。这可以帮助病人对自己的治疗做出明智的决定。

  不过,说到谷歌还是得再提一句前两天刚刚出炉的医学对话AI——AMIE,而且还直接通过了图灵测试!?

  不知道像谷歌的这类产品,以及未来可能出现的医疗AI,甚至医疗AGI,能不能解决Greg的问题呢。

href=""

搜索